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EXECUTIVE SUMMARY

Introduction

The quality of any pavement structure and its performance

capabilities depends on the strength and stiffness properties of the

subgrade soil; thus, the performance of a pavement can be

improved by stabilization of available subgrade material. Cement

stabilization is one of the most effective subgrade improvement

methods because it increases the thermal, chemical, and mechan-

ical resistance of the soil. Subgrade stabilization with cement-

treated subgrades for INDOT projects is based on compressive

strength. While UCS is a simple and commonly used laboratory

test to measure the strength of treated soils, the in-situ strength

determination of subgrade soils is a rather cumbersome process.

However, the Falling Weight Deflectometer (FWD) Test is a non-

destructive test used frequently by INDOT to determine the

stiffness of subgrades and the quality of the pavement structure.

However, the laboratory determination of subgrade stiffness is

carried out by a Resilient Modulus Test (MR). The current project

aims to develop correlations between the compressive strength

(e.g., UCS) and the stiffness (e.g., MR) of cement-treated

subgrades. Three Indiana road project sites with access to

untreated subgrade (US-31, SR-37, and I-65) were selected for

this project. Cement-treated soil specimens were then used to

perform UCS and MR tests. The specimens were prepared based

on the cement percentages used for the design of the roads. Linear

regression analyses were carried out to correlate soil properties

(plasticity index, OMC and MDD) and resilient modulus with

UCS results.

Findings

Based on the results of the tests and analyses performed, no

direct statistically significant correlation was found between

resilient modulus and UCS. The absence of good correlations

between the two tests was consistent with the findings reported in

technical literature. However, it was observed that resilient

modulus values depend on the type of soil. The range of resilient

modulus values for cement-treated A-2-4 soils in this study ranged

from 210 MPa to 275 MPa (30,000 psi to 40,000 psi), while cement-

treated A-4 and A-6 soils fell in the range of 135 MPa to 240 MPa

(20,000 psi to 35,000 psi). Linear regression analyses using

normalized resilient modulus and normalized UCS showed a good

correlation; however, this finding requires prior knowledge of the

resilient modulus and unconfined compression strength of the soil,

and the observation is based on limited data. More high quality

laboratory data is needed to increase confidence in the results.

Implementation

The test results showed that the resilient modulus of A-2-4, A-4,

and A-6 soils treated with cement fall within a fairly narrow range

of values. These results could then be used as preliminary

estimates of the expected values of the stiffness of the soil in the

field, as well as the UCS values. Also, the correlation found

between normalized MR and UCS can be used; however, it

requires prior knowledge of the MR and UCS values of the soil.
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1. INTRODUCTION

Stiffness of the subgrade layer is one of the leading
soil properties used for pavement design. The Mecha-
nistic-Empirical Pavement Design Guide (MEPDG)
relies on the resilient modulus (MR) of the subgrade;
however, MR tests are specialized tests that require
expensive equipment and are time consuming. Alter-
natively, the resilient modulus may be estimated from
correlations with FWD after the construction of pave-
ment for quality assurance (QA) purposes. Chemical
stabilization using lime or cement is widely used by
INDOT to improve the subgrade. Also, INDOT
requires that mix designs for subgrade stabilization
have a minimum UCS. The UCS test is easily perfor-
med in the laboratory but is rather difficult in the field
requiring extensive equipment for imparting sufficient
stress to induce bearing capacity failure. Given that
both strength and stiffness affect construction, design,
and performance of pavements, the central theme of
this study is to establish correlations between strength
and stiffness for subgrade soils in Indiana and, more
specifically, of chemically treated subgrades.

The objectives of this research are as follows.

N Explore availability of target projects with stabilized
subgrades.

N Specify target subgrades based on prevalence and
urgency to INDOT.

N Conduct an extensive laboratory testing and develop
performance-based correlations of compressive strength
(e.g., UCS) and stiffness (e.g., M

N
R).

Develop an effective procedure that can be easily
adopted to other subgrades.

N Provide recommendations for specification of chemically
stabilized subgrade for new pavement design.

To achieve the objectives of this study, a detailed
literature review of existing correlations between
resilient modulus and UCS values for untreated as well
as chemically treated subgrade soils was first per-
formed. Resilient modulus and UCS data from a recent
JTRP report (Sandoval et al., 2019) were used to study
initial correlations for chemically treated Indiana soils.
This was followed by subgrade soil sample collection
from three Indiana road construction sites: US-31, SR-
37 and I-65. Disturbed subgrade soil samples collected
from these sites were used to perform soil characteriza-
tion, MR tests as well as UCS tests. An attempt was
then made to develop correlations between the treated
UC strength and stiffness as obtained from MR data.
The highlights of statistical analysis performed to estab-
lish correlations for the resilient modulus and UCS test
results are discussed in the following sections. During
the course of the study, the need to look into the history
of MR test procedure was realized. The last section in
this report presents a brief literature review of the
history of the MR test protocol evolution and discusses
experimental changes that could improve the inter-
pretation of laboratory test results.

2. LITERATURE REVIEW

2.1 Untreated Soils

The MEPDG, for pavement design, relies on the
resilient modulus of the subgrade. MR tests are
specialized tests that require expensive equipment and
are time consuming. Past research has focused on using
index properties such as percentage of fines (percent
passing No. 200 sieve), plasticity, compaction, and
related properties such as moisture content, dry density,
degree of saturation and UCS to develop empirical
relationships to estimate the resilient modulus of the
soil.

Hossain and Kim (2015) performed a comprehensive
study of correlations between UCS and other properties
derived from UCS curves for fine grained subgrade
soils. Figure 2.1 displays the results of a correlation
between UCS and resilient modulus (at 2 psi confining
pressure and 6 psi deviatoric strength), for two different
types of sample preparation methods for UCS (static
and proctor compaction).

As we can see from the Figure 2.1, there is a fair
correlation for the soils investigated. To improve the
correlation, Hossain and Kim (2015) explored a model
involving soil index properties along with UCS. They
found that the addition of index properties improved
the correlations for both sample preparation methods.
The models along with their R2 values are expressed in
Equations 2.1 and 2.2.

For static compaction :

MR~7,884:2z99:7| UCSð Þz193:1

|PI{47:9|P200; R2~0:86 ðEq: 2:1Þ

For proctor compaction :

MR~6,113:0z95:1| UCSð Þz173:7

|PI{27:8|P200; R2~0:93 Eq: 2:2ð Þ

Where, PI: plasticity index and P200: percent passing
No. 200 sieve.

The study also looked at correlations between initial
tangent modulus (derived from the UCS stress-dis-
placement plot) and resilient modulus but found no
good correlations as the values of the initial tangent
modulus were not accurately determined due to the
initial seating deformations. However, the researchers
were able to obtain an excellent correlation (R2 5

0.97) between stress at 1% strain level and resilient
modulus.

Lee et al. (1997) found similar results, i.e., a strong
correlation between stress at 1% strain level (extracted
from UCS curves) and resilient modulus, for three
Indiana clayey soils: A-4–A-6 (CL), A-6 (CL), and
A-7-6 (CH). The MR test was conducted on the same
sample where the UCS test was performed up to a 1%

strain level. The resilient modulus values used were

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2022/20 1
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Figure 2.1 Correlation results between UCS and resilient modulus (Hossain & Kim, 2015).

perbolic representation of UCS curve, asFigure 2.2 Hy shown in Drumm et al. (1990).

2 Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2022/20

taken at 3 psi confining pressure and 6 psi deviatoric
stress. The correlation found is given by Equation 2.3.

MR~695:4| Su1% {5:93| Su1% Eq: 2:3

Where, Su1%: stress at 1% strain level, and R2 5

0.93.

Drumm et al. (1990) used 11 different types of fine-
grained soils in Tennessee to obtain correlations
between UCS, index properties, moduli obtained from
UCS curves and resilient modulus. The UCS curve was
assumed as hyperbolic and curve fitting parameters were
used to find the initial tangent modulus or the small
strain modulus. These parameters were then utilized for
correlations with resilient modulus. Figure 2.2 shows
the hyperbolic representation of the UCS curve.

The parameters a and b are calculated using standard
curve fitting techniques, by writing the hyperbola
equation in the form of Equation 2.4.

s~
e

azbe
?

e

s
~azbe ðEq: 2:4Þ

The correlation obtained for predicting resilient
modulus, for a range of deviatoric stress (2.5 psi to
25 psi) under no confining pressure, can be expressed as
Equation 2.5.

MR~
a’zb’sd

sd

ðEq: 2:5Þ

Where,

R2 5 0.73,

a9 5 318.2 + 0.337(qu) + 0.73(% clay) + 2.26(PI) 2

0.92 (cd) 2 2.19(S) 2 0.304(P200),

b9 5 2.10 + 0.00039(1/a) + 0.104(qu) + 0.09(LL) 2

0.10(P200),

Where,

% clay 5 percentage finer than 0.002 mm,

P200 5 percentage passing No. 200 sieve,

LL 5 liquid limit (%),

sd 5 deviator stress (psi),

qu 5 UCS (psi), and

S 5 degree of saturation (%).



There are additional correlations and models in the
literature for predicting resilient modulus similar to
those described and based on UCS and soil index
properties for untreated subgrade soils. Hossain et al.
(2011) developed a relationship (Equation 2.6) between
resilient modulus and UCS based on test results of 130
soil samples (A-4, A-6 and A-7-6) from Oklahoma.

Mr

Pa

~2,494:2z0:6 PIð Þ{8:66 P200ð Þz16:4 GIð Þ

z165:53 MCRð Þ{1,961 DRð Þz185:29
qu

Pa

� �

ðEq: 2:6Þ

Where,

R2 5 0.44,

MR 5 resilient modulus at deviator stress of 41.34
kPa (6 psi) and confining stress of 13.78 kPa (2 psi),

Pa 5 atmospheric pressure (kPa),

GI 5 group index,

MCR 5 moisture content ratio (moisture content/
optimum moisture content), and

DR 5 density ratio (dry density/maximum dry density).

The literature reviewed shows fair correlations bet-
ween UCS and resilient modulus for untreated soils.
The correlations seem to improve when additional
variables/parameters are included such as the index
properties of the soil. Other stiffness parameters derived
from the UCS curves such as the initial tangent modu-
lus (calculated through curve fitting) have been used for
establishing correlations of untreated soils.

2.2 Treated Soils

Thompson’s (1966) work from the late 1960’s in
Illinois is one of the first studies looking into the
relationship between stiffness and UCS for lime-
stabilized subgrade soils. Thompson compared the
shear strength (psi) and secant modulus of elasticity
E (ksi), at peak stress, obtained from static, unconso-
lidated-undrained (UU) triaxial compression tests.
The main equation of the correlation is given by
Equation 2.7.

E ksið Þ~9:98z0:1235qu (psi) ðEq: 2:7Þ

Where, qu: UCS.
CTL/Thompson (1998) performed three sets of

resilient moduli and UCS tests on A-7-6 soil mixed
with 6% quicklime to verify the applicability of the
Thompson’s correlation. The MR tests in this study
were performed in accordance with AASHTO T 294
(1994). The results generally agree with Thompson’s
correlation for UCS values within the range of 1,000 to
1,400 kPa.

Little et al. (1995) studied subgrade soils in Texas
stabilized with lime. They used both laboratory and
field data and concluded that Thompson’s correlation
was conservative for UCS values greater than 1,000
kPa. Little et al. (1995) proposed a relationship between
resilient modulus and UCS for lime-stabilized sub-
grades based on Thompson’s correlation between UCS
and flexural modulus (Thompson & Figueroa, 1980),
and between UCS and resilient modulus back-calcu-
lated from FWD (Little et al., 1995). Figure 2.3 depicts

Figure 2.3 Comparison of Thompson’s (1966) correlation, CTL/Thompson (1998) results, and Little et al. (1995) proposed
relationship for lime stabilized soils (adapted from Toohey et al. 2013).

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2022/20 3



the comparison between Thompson’s correlation and
Little et al.’s (1995) proposed relationship for lime
stabilized subgrade soils.

Toohey et al. (2013) tested three fine grained soils to
try to reproduce the relationship between resilient
modulus and UCS recommended by Thompson (1966)
and Little et al. (1995) for lime-stabilized sub-
grade soils. Table 2.1 summarizes the soil classifications,
grain size, and plasticity data for the soils used. Resilient
modulus and UCS tests were performed on a total of 15
lime-treated soils (five per each soil type). Lime-treated
specimens with 100 mm diameter and 200 mm height
were prepared at OMC and �dmax conditions (see
Table 2.1). MR values obtained with confining stresses
at 14 kPa and 28 kPa, at a deviator stress of 41 kPa,
were used in the analysis. The UCS tests were performed
on the same specimens used for the MR test, and
immediately after the MR test was completed.

Figure 2.4 (a) and (b) are plots of all MR and UCS
test results of A, B, and C soil specimens, at 14 kPa and
28 kPa confining stresses, respectively (both at 41 kPa
deviatoric stress). The plots also include the Thomson’s
(1966) correlation and Little et al. (1995) proposed
relations for lime-stabilized subgrades. As observed in
Figure 2.4, there is no clear correlation between UCS
and MR values (that is, R2 , 0.05 at both confining
stresses).

Data from the recent JTRP project, SPR-4107:
Subgrade Stabilization Alternatives (Sandoval et al.,
2019), was used to test the correlation between resilient
modulus and UCS for fine-grained Indiana subgrade
soils. The project investigated soils from three locations

in Indiana treated with cement, Lime Kiln Dust (LKD)
and a combination of cement and LKD. Details of the
soil properties (classification, index properties etc.)
are summarized in Table 2.2. Table 2.3 lists the opti-
mum amount of chemical needed, the optimum
moisture content (OMC) and the maximum unit weight
of the soils.

Resilient modulus and UCS tests were performed at
7-days and 28-days curing time for the treated speci-
mens, which were prepared at OMC and at maximum
unit weight, as described in Table 2.3. The results of the
correlations between UCS and MR can be found in
Figures 2.5 and 2.6. The resilient modulus at 2 psi
confinement and 6 psi deviatoric stress was chosen for
the comparisons. It is clear from the figures that there
is no direct correlation between UCS and resilient
modulus for the soils investigated in this study.

Becker (2021) developed a correlation between the
resilient modulus and the unconfined compression
strength for soils encountered on I-69 near Anderson,
Indiana. The soil used was primarily fine-grained A-6
soil (CL based on USCS classification). Cement-treated
soil specimens at different moisture content, relative
compaction and cement content were prepared for
resilient modulus and UCS testing. The study resulted
in a fair correlation (R2 5 0.485) between MR and UCS
for cement stabilized subgrade soils, as observed in
Figure 2.7. The study proposed that since UCS
correlated with MR (it also correlated well with LWD
deflection), UCS could be well-suited to relate cement-
stabilized subgrade performance requirements (pave-
ment design) and acceptance criteria (construction).

TABLE 2.1
Soil properties (untreated and treated) for soils A, B, and C (from Toohey et al., 2013)

Untreated Lime Treated

Soil AASHTO Class USCS Class Clay (%) Silt (%) LL (%) PL (%) PI (%) OMC (%) 3rdmax (kg/m )

A

B

C

A-7-6

A-6

A-7-6

CH

CL

CL

29

12

15

19

41

58

55

33

43

18

16

15

37

17

29

29

29

25

1,394

1,684

1,554

Note: LL 5 liquid limit; PI 5 plasticity index; PL 5 plastic limit; rdmax 5 maximum unit weight.
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Figure 2.4 Summary of laboratory measured UCS versus (a) MR (confining stress sc 5 14 kPa; deviatoric stress sd 5 41 kPa) and
(b) MR (confining stress sc 5 28 kPa; deviatoric stress sd 5 41 kPa) (adapted from Toohey et al., 2013).

TABLE 2.2
Site locations and soil properties from SPR-4107 project (Sandoval et al., 2019)

Site LL (%) PL (%) PI (%) Passing # 200 AASHTO Class

Hartford City 26.00

37.20

11.60

14.20

14.40

23.00

–

88.20

A-6

A-6

Bloomington #1

Fort Wayne

Bloomington #2

Bloomington #3

41.20

43.00

66.00

58.60

17.30

14.10

20.80

21.00

23.90

28.90

45.20

37.60

88.40

82.00

93.50

–

A-7-6

A-7-6

A-7-6

A-7-6
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TABLE 2.3
Optimum amount of treatment, maximum unit weight, and optimum moisture content for the four soils in SPR-4107 (Sandoval et al.,
2019)

Optimum LKD Optimum Cement Optimum Cement + LKD

Site Amt (%) cd (pcf) OMC (%) Amt (%) cd (pcf) OMC (%) Amt (%) cd (pcf) OMC (%)

Hartford City

Bloomington #1

Fort Wayne

Bloomington #2

Bloomington #3

6

6

5

5

5

115.4

103.6

113.6

98.6

101.1

16.5

20.8

15.6

26.3

23.1

3

3

3

5

5

121.1

107.3

117.9

101.1

101.8

12.3

19.6

14.8

25.7

22.7

–

2+2

–

2+2

–

–

106.1

–

99.8

–

–

20.2

–

26.4

–

Note: OMC 5 optimum moisture content; cd 5 maximum unit weight; Amt 5 amount.
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Figure 2.5 Correlation between UCS and resilient modulus for cement-treated samples (data from Sandoval et al., 2019).

Figure 2.6 Correlation between UCS and resilient modulus for LKD-treated samples (data from Sandoval et al., 2019).



Figure 2.7 Correlation between resilient modulus and UCS for cement stabilized A-6 soil specimens (Becker, 2021).

3. SOIL CHARACTERISTICS AND RESILIENT
MODULUS

The key objective of this project is to establish a
statistically significant correlation between resilient
modulus (MR) and UCS for chemically treated subgrade
soils in Indiana. In order to achieve this objective,
different sites in Indiana were identified to collect soil
samples for laboratory testing. Site locations included
treated subgrade soils ranging from A-1 to A-6. Soil
samples were collected during the construction of new
roads and road reconstruction projects, when the
subgrade soils were accessible. At each site, a represen-
tative section of 90 m (300 ft) length was selected for
sample collection (Figure 3.1). Eleven locations at 9 m
(30 ft) intervals were identified at each site, where two
bags of soil (approximately 25 kg each) were collected at
each location.

3.1 Site Location

These are the sites where untreated subgrade soil was
collected: US-31, SR-37, and I-65. The location of the
sites is displayed in Figure 3.2.

Site 1: US-31

This site is located on US-31 in St. Joe County, near
South Bend, from station 170+00 to 173+00. Untreated
soil samples were collected in July 2020 during road
construction under Contract No. R-41975. The site has
PCCP pavement over a cement stabilized subgrade
treated with 4% cement by weight. The water content of

Figure 3.1 Representative section and selected points for
sample collection.

the in-situ soil was between 6.0% and 13.1% (average
8.6%).

Site 2: State Road 37

This site is located on State Road 37 (SR-37) in
Martinsville. Soil samples were collected from RP
349+08 to 346+08 in July 2020, during construction
under Contract No. R-33493. The road has PCCP
pavement over a cement stabilized subgrade treated
with 5% cement by weight. The water content of the in-
situ soil was between 9.8% and 13.9%. A Sand Cone
Test was performed near Station 6 and the in-situ soil
unit weight was determined to be 1.98 g/cc (123.3 lb/ft3).

Site: 3 Interstate 65

This site is located on Interstate Road I-65 in West
Lafayette, Tippecanoe County. Untreated soil samples
were collected in August 2020 on the south-bound
section near exit 178 (RP 815+00). The site has a
Portland cement concrete pavement (PCCP) over a
cement stabilized subgrade (5% cement content by
weight). Water content of the in-situ soil was between
6.0% and 13.1% (average 8.6%).

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2022/20 7



Figure 3.2 Location of the sites for sample collection.

3.2 Laboratory Testing: Soil Characterization

The soil samples collected from the selected sites were
tested in the laboratory. The tests included Atterberg
limits and grain size analysis, following AASHTO T-
89-10 (2011), AASHTO T 90 (2020) and ASTM C 136-
14 standards, respectively. The soil from each location
was air dried and crushed before using it for the tests.
Moist samples were washed through the US Standard
No. 200 Sieve (75 Microns) prior to sieve analysis to
obtain the grain size distribution. Based on the results,
the soils were classified as per AASHTO M 145-91
(2012). Standard Proctor Tests, following AASHTO T
99, (2019) were performed on all the soil samples to
obtain the optimum moisture content (OMC) and the
maximum dry density (MDD) of the soils. All
compaction tests were performed with soils passing
US Standard No. Sieve 4 (4.75 mm). The results of all
classification tests for the sites included in this study
were obtained from Gupta (2022).

3.2.1 Site 1 (US-31) Results

The test results of the samples obtained from Site 1,
US-31, indicate considerable variability. Most of the
soils are coarse-grained A-1 (A-1-a and A-1-b) except
for Samples 4 and 11, which are classified as A-2-4. The
soils exhibited low to no plasticity with a small per-
centage of fines (11% , 22%). Figure 3.3 and Figure 3.4
present the grain size distribution and compaction curves,
respectively, for all 11 locations of the site. Samples 4 and
11 have different gradation curves than the rest, which is
consistent with their different classification (A-2-4). As
seen from the results, the soils also exhibited a wide range
of MDD values, from 1.83 to 1.99 g/cc (114 lb/ft3 to 124
lb/ft3). The results from classification and compaction
tests on all eleven samples are summarized in Table 3.1.

3.2.2 Site 2 (SR-37) Results

All soils samples collected from this site show little
variation in terms of grain size distribution and
compaction. The results obtained from classification
and compaction tests performed on all eleven samples
are summarized in Table 3.2. All soil samples had a
high percentage of sand (50%–60%), with low liquid
limit and plastic limit. The gradation and compaction
curves also showed uniform results (Figures 3.5 and
3.6). The average OMC and MDD values were found
to be 10% and 2.02 g/cc (126.1 lb/ft3), respectively.
Based on the soil properties, the soils were classified as
A-2-4 as per AASHTO classification.

3.2.3 Site 3 (I-65) Results

Soil samples collected from the third site (I-65) had
considerably high percentage of fines (50%–80%)
compared to the previous two sites. Figures 3.7 and
3.8 represent the grain size distribution and compaction
test results, respectively, for all the samples. All the soil

Figure 3.3 Grain size distribution curves for US-31 samples (data from Gupta, 2022).
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Figure 3.4 Compaction curves for US-31 samples (data from Gupta, 2022).

TABLE 3.1
Soil classification and compaction results for US-31 samples (data from Gupta, 2022)

Classification

Sample LL % PL % PI % % Fines AASHTO USCS OMC % MDD g/cc (lb/ft3)

1 21.4 14.7 6.7 15.4 A-1-b SC-SM 11.2 1.95

2 18.2 NP NP 17.7 A-1-b SM 11.0 1.97

3 18.5 NP NP 13.6 A-1-b SM 11.2 1.92

4 NP NP NP 12.8 A-2-4 SM 11.0 1.83

5 23.3 NP NP 19.1 A-1-b SM 12.0 1.91

6 23.6 17.3 6.3 19.8 A-1-b GC-GM 12.0 1.88

7 19.1 16.0 3.1 12.4 A-1-a GM 10.2 1.99

8 19.5 13.1 4.4 13.4 A-1-b SC-SM 10.8 1.96

9 18.3 14.7 3.6 10.9 A-1-a GM 12.4 1.93

10 25.9 14.4 11.5 17.4 A-1-b SC 11.6 1.93

11 23.5 NP NP 22.0 A-2-4 SM 10.4 1.86

18,26 13,17 3,11 11,22 A-1 SM 10,12 1.83,1.99

Note: NP 5 non-plastic.

TABLE 3.2
Soil classification and compaction results for SR-37 samples (data from Gupta, 2022)

Classification

Sample LL % PL % PI % % Fines AASHTO USCS OMC % MDD g/cc

1 23.2 12.4 10.8 23.0 A-2-4 SC 10.0 2.01

2 21.4 12.6 8.8 21.5 A-2-4 SC 10.0 2.03

3 23.1 13.7 9.4 21.8 A-2-4 SC 9.7 2.03

4 21.0 12.3 8.7 25.9 A-2-4 SC 9.6 2.01

5 21.0 12.5 8.5 26.9 A-2-4 SC 9.6 2.03

6 21.5 12.7 8.8 29.6 A-2-4 SC 10.4 2.00

7 21.7 12.7 9.0 29.1 A-2-4 SC 9.8 2.01

8 20.1 13.8 6.3 23.5 A-2-4 SC 9.8 2.02

9 20.6 12.5 8.1 30.3 A-2-4 SC 9.8 2.03

10 19.9 12.7 7.2 28.8 A-2-4 SC 9.8 2.03

11 20.4 14.7 5.7 29.0 A-2-4 SC 9.6 2.01

– 20–23 14,22 6–11 20–30 A-2-4 SC ,10.0 ,2.02
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Figure 3.5 Grain size distribution curves for SR-37 samples (data from Gupta, 2022).

Figure 3.6 Compaction curves for SR-37 samples (data from Gupta, 2022).
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samples showed high liquid limit but relatively low
plasticity. Except for Sample 1, the rest of the samples
had high OMC values (14%–17%). The samples also
showed a wide range of MDD varying from 1.71–2.07
g/cc. The results of the classification and compaction
tests are summarized in Table 3.3. The soil samples for
this site are classified as A-6 (8 out of 11 samples) with
three samples being A-4, according to the AASHTO
classification.

3.3 Resilient Modulus Tests

The MR tests were performed on samples at all
locations, following AASHTO T 307-99 (2007). The MR

test is essentially a cyclic test designed to simulate real
life traffic loading in the laboratory. It is comprised of

16 loading sequences with a combination of five devia-
toric (2, 4, 6, 8, and 10 psi) and three confining stresses
(2, 4, and 6 psi), including a conditioning sequence.
The first sequence consists of a conditioning cycle of
750 repetitions to ensure proper contact between the
specimen and the loading cap, and to remove any
effects of initial loading versus reloading. All other
sequences involve 100 cycles of loading and reload-
ing. The average resilient modulus obtained for the
last five cycles is reported for each sequence. Each
test results in 15 resilient modulus values correspond-
ing to each deviatoric and confining stress. For
design purposes, often the resilient modulus value at 6
psi deviatoric stress and 2 psi confining stress is used,
as this best represents the loading of a single axle
wheel load.



Figure 3.7 Grain size distribution curves for I-65 samples (data from Gupta, 2022).

Figure 3.8 Compaction curves for I-65 samples (data from Gupta, 2022).
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Specimens are prepared for the tests at each location
following a modified double plunger method specified
in Annex C of AASHTO T 307-99 (2007) standard for
type 2 subgrade materials (fine-grained soils). The
method involves a split mold, spacer disks and a hand
press used for static compaction. Remolded specimens
are compacted in five layers using spacers of different
thickness to ensure all layers have equal volume. After
compaction, three measurements of height and dia-
meter are taken to obtain the average volume of the
sample. The specimens prepared for testing are
approximately 2.8 in. (71 mm ) in diameter and 5.6
in. (142 mm) in height (2:1 height to diameter ratio).
The mass and density of the specimens is also obtained.

For all locations, both untreated and cement-treated
MR test specimens were prepared at OMC and MDD
values corresponding to the standard proctor test
results of the untreated samples. The cement treated
samples were cured for 28 days before testing. Curing
involved carefully wrapping the samples with cling film
and storing them in a cooler for the curing period to
ensure minimal loss of moisture content. Control
specimens of cement treated, and untreated specimens
were also prepared to determine changes in water
content during the curing period. The water content of
the treated specimens was measured just after specimen
preparation as well as after performing the MR test.
The loss of water content of the treated samples after



TABLE 3.3
Soil classification and compaction results for I-65 samples (data from Gupta, 2022)

Sample LL % PL % PI % % Fines

Classification

OMC % MDD g/ccAASHTO USCS

1

2

3

4

5

6

7

8

9

10

11

–

21.5

28.5

25.4

30.1

31.4

32.7

24.1

36.2

31.0

35.1

35.3

21,35

11.5

16.0

16.3

16.8

16.6

18.7

15.1

19.7

17.9

17.6

18.7

11,20

10.1

12.5

9.1

13.3

14.8

13.9

9.0

16.5

13.1

17.4

16.6

9–17

51.7

67.9

53.7

80.1

65.9

69.8

46.0

78.9

73.3

75.8

80.2

50,80

A-4

A-6

A-4

A-6

A-6

A-6

A-4

A-6

A-6

A-6

A-6

A-6

CL+ML

CL

CL+ML

CL

CL

CL

CL+ML

CL

CL

CL

CL

CL

9.5

14.3

14.0

14.7

14.8

16.0

15.0

17.0

16.0

16.5

16.5

9.5,16.5

2.07

1.82

1.84

1.84

1.84

1.79

1.85

1.71

1.75

1.76

1.75

1.71,2.07

Figure 3.9 Summary of resilient modulus results for untreated samples—US-31 (data from Gupta, 2022).
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curing was about 1%, while that of the untreated
specimen showed negligible change in water content.
The decrease in water content for the treated specimens
is attributed to the chemical reaction between the soil
and cement during the curing process. The data of MR

tests for all sites included in this study was obtained
from Gupta (2022).

3.3.1 US-31 Results

Resilient Modulus Tests were performed on treated
as well as on untreated soils at all 11 locations for Site 1
(US-31). The soil specimens were compacted at MDD
values obtained from the Standard Proctor Tests on
untreated samples. The relative compaction for all
samples was found to be between 97% to 99%. The

treated specimens were prepared with 4% cement, by
weight, mixed with the natural soil and cured for 28
days. Little variations in MR values, for untreated speci-
mens, were found for all the soils at the site; how-
ever, treated specimens exhibited larger differences. For
untreated specimens, the MR, ranged from 40 MPa–140
MPa (5,800 psi–20,200 psi), while for treated specimens,
the resilient modulus was three times higher, and ranged
from 120 MPa–470 MPa (18,000 psi–68,000 psi).
Figure 3.9 and Figure 3.10 provide the MR test results
for all untreated and treated samples, respectively. The
variability observed in the treated specimens could be due
to differences in gradation and plasticity of the soils. The
resilient modulus of the treated specimens showed a slight
dependency on confining stress, but little to none on
deviatoric stress.



3.3.2 SR-37 Results

For the SR-37 site, MR tests were performed on
treated and untreated specimens, which were compacted
at the MDD and OMC of the untreated soil. The relative
compaction for all samples was found to be, on average,
98%. The treated specimens were prepared with 5%

cement mixed, by weight, and cured for 28 days. The
range of MR values of the untreated specimens were
between 48 MPa and 190 MPa (7,000 psi to 28,000 psi)
and of the treated specimens, in the range of 170 MPa to

520 MPa (25,000 psi to 75,000 psi). Figures 3.11 and 3.12
are plots of the resilient modulus for all untreated and
treated samples. The effects of confining stress were
observed in the treated as well as in the untreated
specimens, with treated specimens exhibiting a large
decrease of resilient modulus with increasing confining
stress (indicated by the larger spread of values in
Figure 3.12). The resilient modulus results are fairly
uniform, which indicate uniformity of the soil across all
stations. This is expected due to the small differences in
soil characteristics at the site (Table 3.2).

Figure 3.10 Summary of resilient modulus results for treated samples—US-31 (data from Gupta, 2022).

Figure 3.11 Summary of resilient modulus results for untreated samples—SR-37 (data from Gupta, 2022).
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Figure 3.12 Summary of resilient modulus results for treated samples—SR-37 (data from Gupta, 2022).

Figure 3.13 Summary of resilient modulus results for untreated samples—I-65 (data from Gupta, 2022).
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3.3.3 I-65 Results

At the I-65 site, as with the other sites, MR tests were
performed on treated and untreated specimens. All
specimens were compacted at the MDD, and OMC of
the Standard Proctor Tests conducted on untreated
soil. The relative compaction for all samples was found
to be on average between 97% to 99%. The treated
specimens were prepared with 5% cement mixed, by
weight, with the natural soil and cured for 28 days. The
MR values of the untreated specimens were between 34
MPa and 135 MPa (5,000 psi to 20,000 psi) and of the

treated specimens, 82 MPa to 530 MPa (12,000 psi to
77,000 psi). Figures 3.13 and 3.14 show the resilient
modulus of all untreated and treated samples. The
effect of confining stress was pronounced in the treated
specimens, with values decreasing with decreasing
confining. The untreated samples did not exhibit much
variation with respect to confining and deviatoric
stresses, as indicated by the narrow range of values
displayed in Figure 3.13. The variability observed in the
resilient modulus values of the treated specimens could
be due the wide range of soil properties observed at the
site (see Table 3.3).



Figure 3.14 Summary of resilient modulus results for treated samples—I-65 (data from Gupta, 2022).

4. UNCONFINED COMPRESSIVE STRENGTH
TESTS

The UCS test is the primary method used to
determine the strength of the subgrade. UCS tests were
performed on reconstituted treated samples at all loca-
tions, as per AASHTO T 208-15 (2019). Three tests
were performed at each location for all sites to ensure
repeatability of results. The sample preparation proce-
dure was kept similar to that for the MR tests (com-
pacted in five layers of equal volume using the double
plunger method) to ensure compatibility of results. The
specimens prepared were approximately 2.8 in. (71 mm)
in diameter and 5.6 in. (142 mm) in height (2:1 height to
diameter ratio).

The cement-treated specimens were prepared at
OMC and MDD values corresponding to the standard
proctor test results on untreated samples. The samples
were cured for 7 days before testing. Curing involved
carefully wrapping the samples with cling film and stor-
ing them in a cooler for the curing period to ensure
minimal loss of moisture content. The water content of
the treated specimens was measured just after specimen
preparation, as well as after performing the UCS test.
The loss of water content of the treated samples after
curing was on average about 0.8%–1% which is expected
because of the chemical reaction between cement and soil.

The specimens were tested at a 1% strain rate (0.056
in./min or 0.72 mm/min) and were loaded to failure.
The output of the tests was the stress-strain response
from which the peak value was identified as the UCS.
Additional UCS tests were done on specimens used
for the MR tests. The UCS test, in these cases, was
conducted at the end of the MR tests. Note that these
tests were done on specimens 28-days old. Figure 4.1

includes photographs of representative samples loaded
to failure.

4.1.1 US-31 Results

Three UCS tests were performed on treated soils at
each location. The soil specimens were compacted at
the OMC and MDD values obtained from Standard
Proctor Tests on untreated samples. The relative
compaction for all samples was found to in the range
of 97% to 99%. The treated specimens were prepared
with 4% cement, by weight, mixed with the natural soil
and cured for 7 days. The water content was recorded
at the time of sample preparation and after performing
the UCS tests. The water content was found to decrease
by 1%, on average, among all samples. Figure A.1 in
Appendix A displays the stress-strain plots for UCS
tests performed on cement-treated specimens at all

Figure 4.1 Samples post UCS tests.
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Figure 4.2 Summary of 7-days cured UCS values for all locations at US-31 site.
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locations (except at Location No. 4, as the samples were
found to have cracks after curing). Figure 4.2 sum-
marizes all the UCS tests. The UCS values range from
1.5 MPa to 2.9 MPa (220 psi to 415 psi). The variability
in the UCS results can be explained by the differences in
gradation and plasticity in the soils found at this site
(see Table 2.1). The strain at failure is also considerably
lower compared to the untreated subgrade soils, as
reported in the literature (Hossain et al., 2011; Lee
et al., 1997; Sandoval et al., 2019) and ranges between
0.8 to 1.2%.

UCS tests were also performed on 28-days cured
cement-treated samples. These tests were done on the
same specimens used for MR testing. Figure 4.3 is a
plot of the UCS test results for the 28-days cured
samples. The results range from 1.75 MPa to 3.2 MPa
(255 psi to 470 psi) and are on average about 1.2 times
larger than the UCS at 7-days.

4.1.2 SR-37 Results

Three UCS tests were performed on treated soils at
each location at the SR-37 site. The soil specimens were
compacted at the OMC and MDD values obtained
from the Standard Proctor Tests on untreated samples.
The relative compaction for all the prepared samples
was found to be on average 98%. The treated specimens
were prepared with 5% cement, by weight, mixed with
the natural soil and cured for 7 days.

Figure A.2 in Appendix A displays the stress-strain
plots of UCS tests performed on cement-treated speci-
mens at all locations. The plots include a large number
of data points because the tests were performed with the
new UCS load frame (Humboldt Master Loader),

capable of recording data at frequent intervals. A sum-
mary of the UCS test results is presented in Figure 4.4.
The majority of UCS values lie in the range of 2.4 MPa
to 3.1 MPa (350 psi to 450 psi). The similarity of the
stress-strain plots and the narrow range of UCS values
can be explained by the uniform nature of the soils
found at this site (see Table 3.2).

UCS tests were also performed on 28-days cured
cement-treated samples at all 11 locations. These tests
were done on the same sample after the MR test.
Figure 4.5 displays the UCS test results for the 28-days
cured samples. The UCS values range from 2.8 MPa to
4 MPa (410 psi to 575 psi) and are, on average, about
1.4 times the UCS at 7-days.

4.1.3 I-65 Test Results

Three UCS tests were performed on treated soils at
each location, at the I-65 site. The soil specimens were
compacted at the OMC and MDD values obtained
from the Standard Proctor Tests on untreated samples.
The relative compaction for the prepared samples was
found to be on average 97% to 98%. The treated
specimens were prepared with 5% cement, by weight,
mixed with the natural soil and cured for 7 days. Figure
A.3 in Appendix A shows the results of 7-days cured
specimens tested at all locations of I-65 while a sum-
mary of UCS test results done at the site is presented in
Figure 4.6. The majority of the UCS values for this site
lie in the range of 180 psi to 290 psi (1.2 to 2 MPa)
(except for Location 1). The UCS value at Location 1
is distinctly higher compared to the rest due to a
considerably lower OMC value and higher MDD at
this location (see Table 3.2).



Figure 4.3 UCS test results for the 28-days cured samples performed after MR test—US-31.
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Figure 4.4 Summary of 7-days cured UCS values for all locations at SR-37 site.

Figure 4.7 includes plots of the UCS test results for the
28-days cured samples. The UCS values range from 1.7
MPa to 5.1 MPa (240 psi to 745 psi). The UCS at Loca-
tion 1 is distinctly higher than the rest, which is most

likely due to the high MDD and low OMC of the soil (see
Table 3.3). The UCS values at 28-days curing are on ave-
rage 1.4 to 1.5 times the UCS values at 7-days curing for
this site, consistent with the results from the other sites.



Figure 4.5 UCS test results for the 28-days cured samples performed after MR test—SR-37.

Figure 4.6 Summary of 7-days cured UCS values for all locations at I-65 site.
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Figure 4.7 UCS test results for the 28-days cured samples performed after MR test—I-65.
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5. CORRELATIONS BETWEEN RESILIENT
MODULUS AND UCS

The discussion and data presented in Chapter 2
(literature review) suggests that it is unlikely to get a
statistically significant or direct correlation between the
resilient modulus and UCS parameters in the case of
treated soils. The approach in this study is to try to
establish a range of values for the resilient modulus and
UCS test results across the three sites used for this
project. Data representing the resilient modulus and
UCS test results were taken to represent the strength-
stiffness test results. The resilient modulus values cor-
responding to 6 psi deviatoric stress, and 2 psi (low
confinement) and 6 psi (high confinement) confining
stress were selected from all the tests. For the UCS
tests, the data selected were the average UCS values at
the 7-days and 28-days cured samples.

Figures 5.1 and 5.2 display the plots of resilient
modulus versus 7-day and 28-day cured UCS, respec-
tively, for all the sites. As evident from the plots there is
a wide range of values in terms of both resilient
modulus and UCS results for the soils used in this
project. The degree of scatter in the plots also indicates
that there is not a direct statistically significant cor-
relation between the resilient modulus and UCS for the
treated soils considered in this study.

An alternate way to plot the resilient modulus and
UCS data for all the sites is to sort them with respect to
the type of soil. The MEPDG for pavement design
relies on the use of the resilient modulus of the subgrade
at 2 psi confinement and 6 psi deviatoric stress. A plot
combining the resilient modulus, UCS and soil type
data can prove useful for estimating the expected range
of values of the resilient modulus. Figures 5.3 and 5.4
are plots of the resilient modulus (6 psi deviatoric stress

and 2 psi confinement) versus the 7-day and 28-day
UCS, respectively, including the type of soil.

From Figure 5.3 and Figure 5.4 it can be observed
that the expected range of resilient modulus values for
cement-treated A-2-4, A-4 and A-6 soils can be
estimated from the 7-day or 28-day cured UCS values
with a fair degree of confidence. The majority of
resilient modulus values fall in the range of 30,000 psi to
40,000 psi (210 to 275 MPa) for cement-treated A-2-4
soils. Most of the resilient modulus values for cement-
treated A-4 and A-6 soils (fine-grained/clayey soils) fall
in the range of 20,000 psi to 35,000 psi (135 to 240
MPa). The resilient modulus values of A-1 soils exhibit
a large degree of scatter. The reason may be the non-
uniform properties of the soils at US-31, i.e., different
Atterberg limits, OMC and MDD; see Table 3.1. This
calls for including all soil properties, in addition to
OMC and MDD, to improve estimates of resilient
modulus values.

A statistical analysis was conducted to build a
correlation model for the dataset. A multi-variate linear
regression was performed that included the following
parameters: resilient modulus, UCS (7-days and 28-
days cured), percentage of fines, plasticity index,
optimum moisture content (OMC) and maximum dry
density (MDD). The values of the resilient modulus and
UCS were normalized for the analysis. The normal-
ization utilized is expressed by Equation 5.1(a) and
Equation 5.1(b).

Normalized MR~
MR{min MRð Þ

max MRð Þ{ min MRð Þ ðEq: 5:1aÞ

Normalized UCS~
UCS{ min UCSð Þ

max UCSð Þ{ min UCSð Þ ðEq: 5:1bÞ



Figure 5.1 Resilient modulus versus 7-days cured UCS results for all sites.
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Figure 5.2 Resilient modulus versus 28-days cured UCS results for all sites.

Where,

Min MR, Max MR: minimum and maximum resilient
modulus values across all sites, respectively.

Min UCS, Max UCS: minimum and maximum UCS
values across all sites, respectively.

The generalized model utilized for the analysis is
presented by Equation 5.2.

Normalized MR~X1 � % of finesð ÞzX2

� PIð ÞzX3 � OMCð ÞzX4 � MDDð ÞzX5

� Normalized UCSð Þ

ðEq: 5:2Þ

Where,

X1 – X5: coefficients (estimated from the linear
regression analysis),

PI: plasticity index (%),

OMC: optimal moisture content (%), and

MDD: maximum dry density (g/cc).

The coefficients X1-X5 for the 28-days cured UCS
values are presented in Table 5.1.

The p-value represents the significance of the
variable with respect to the regression analysis. If the
p-value is less than a certain significance level, then



Figure 5.3 Resilient modulus versus 7-days cured UCS results with soil type.
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Figure 5.4 Resilient modulus versus 28-days cured UCS results with soil type.

the parameter has a statistically significant relationship
with the response variable (in our case the resilient
modulus). The results in Table 5.1 show that the p-
value of the percentage of fines is the highest, meaning
it is the least statistically significant parameter in the
model (text in red). Because of that, a new trial was
attempted without the percentage of fines. The new
model used for analysis is expressed by Equation 5.3.

Normalized MR~X1 � PIð ÞzX2

� OMCð ÞzX3 � MDDð ÞzX4

� (Normalized UCS) ðEq: 5:3Þ

The results of the model, using the 28-days cured UCS
values, are presented in Table 5.2. The table shows that

the MDD and OMC parameters are the most statistically
significant (lowest p – values are in green).

The predicted resilient modulus values, using the
regression analysis with the values in Table 5.2, are
then compared with the measured resilient modulus
values, to verify the accuracy of the model. Figure 5.5
plots the predicted and the measured resilient modulus
values for the all the soils tested. The model does a
fairly good job of predicting the resilient modulus with
a multi-variate R2 5 0.85.

Table 5.3 presents the results of the statistical
analysis following the same process discussed, but for
the 7-days cured UCS values. The table shows that the
PI and OMC are the most statistically significant
parameters (lowest p – values) for the model.



TABLE 5.1
Linear regression analysis results for correlation between resilient modulus and 28-days cured UCS including all five parameters

Parameter Coefficients Estimate Std. Error t-value p-value

% of Fines

PI

OMC

MDD

28-Day Normalized UCS

X1

X2

X3

X4

X5

-0.00236

0.038135

-0.0756

0.632981

-0.44307

0.003849

0.020857

0.037209

0.219603

0.323901

-0.612

1.828

-2.032

2.882

-1.368

0.54774

0.08323

0.0564

0.00954

0.1873

Note: Red numbers signify least significant parameter.

TABLE 5.2
Linear regression analysis results for correlation between resilient modulus and 28-days cured UCS

Parameter Coefficients Estimate Std. Error t-value p-value

PI X1 0.03159 0.01763 1.792 0.08824

OMC X2 -0.0867 0.03198 -2.711 0.01345

MDD X3 0.69546 0.19137 3.634 0.00165

28-Day Normalized

UCS

X4 -0.48531 0.31148 -1.558 0.1349

Note: Green numbers signify most significant parameter.

TABLE 5.3
Linear regression analysis results for correlation between resilient modulus and 7-days cured UCS

Parameter Coefficients Estimate Std. Error t-value p-value

PI X1 -0.03987 0.01305 -3.056 0.00489

OMC X2 0.06429 0.02967 2.167 0.0389

MDD X3 0.05832 0.10203 0.572 0.57215

7-Day Normalized

UCS

X4 0.12174 0.23005 0.529 0.60083

Note: Green numbers signify most significant parameter.
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Similar to what was done with the 28 days cured
UCS values in Figure 5.5, Figure 5.6 plots the pre-
dicted resilient modulus using the 7-days cured UCS
and provides a comparison with the measured resilient
modulus. The model for the 7-days does perform
reasonably well, with a multi-variate R2 5 0.91.

It should be noted that although these simple linear
regression models do a reasonable job relating stiffness

with strength, the dataset used, albeit of high quality, is
limited. Thus, the applicability of the model should be
limited to the range of soils used in the study. The
accuracy of the model should be tested with a large
number of cases taken from different sites.



Figure 5.5 Measured versus predicted resilient modulus from 28-days cured UCS.
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Figure 5.6 Measured versus predicted resilient modulus from 7-days cured UCS.

6. HISTORY OF RESILIENT MODULUS TEST

Early pavement thickness design was based on
experience, on the type of subgrade soil, and the plastic
response of pavement materials to static load.
California Bearing Ratio (CBR) and Resistance Value
(R value) Tests were used to assess the quality of
subgrade materials. Hveem (1955) realized that one of
the main causes for failure in flexible pavements was

excessive rutting or cracking due to fatigue and that
there was a need to develop a testing procedure that
better simulated the traffic loading conditions. He also
coined the term resilience to define the recoverable
deformations observed in soils subjected to repeated
load during testing. The equipment used by Hveem,
a resiliometer, could measure the compression and
rebound of soil specimens by measuring volumetric
displacement under repeated dynamic loads. However,



it provided limited information in terms of stiffness of
the soil under cyclic loading. Figure 6.1 gives one
example of resiliometer test results performed on an
expansive soil, which shows an increase in resilience of
the soils with increasing moisture content.

Pavement materials are subjected to cyclic stresses
of varying magnitude and duration depending on the
axle load, speed, and frequency of passing vehicles.
Following the work by Hveem (1955), a very extensive
testing program was carried out by Seed and coworkers
(Seed & Chan, 1958; Seed & Fead, 1960; Seed &
McNeil, 1956; Seed et al., 1955; Seed et al., 1958; Seed
et al., 1960; Seed et al., 1962; Seed et al., 1967) to study

the strength and deformation response of soils under
repeated loading conditions. Seed and Chan (1958) and
Seed et al. (1958) performed repeated load tests on
partially saturated silty clay soil specimens and studied
the effect of stress change on deformation by subjecting
specimens to a large number of deviatoric stress cycles.
They observed that axial strains developed in soil were
a function of stress history and a specimen subjected
first to a series of low deviatoric stresses followed by
higher stress cycles had lower axial strains, when
compared to the same specimen subjected only to high
deviatoric stress cycles (Figure 6.2). This suggested that
the stress history produced a stiffening effect on the

Figure 6.1 Effect of moisture content on resilience (from Hveem, 1955).

Figure 6.2 Effect of change in strain during repeated loading (from Seed et al., 1958).
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specimens and thus when simulating a traffic load test
the influence of densification should be considered.
Seed et al. (1955) and Seed and Fead (1960) proposed
the triaxial testing equipment needed for the changes in
stress intensity, duration and frequency of stress
application used for MR tests. The effect of thixotropy,
stress application, stress intensity, loading frequency,
degree of saturation and method of compaction was
discussed in detail in Seed et al. (1962, 1967). The
research work paved the way for the use of resilient
modulus in pavement design. NCHRP Report 128 (Van
Til, 1972) first featured a procedure to perform the test
and also included a correlation chart for resilient
modulus and soil support value, which could be used
for design.

The test procedure followed by researchers prior to
1982 varied quite a lot in terms of the number of
loading repetitions, stress intensity, load waveform, etc.
Larew and Leonards (1962) performed repeated load
tests with a semicircular load waveform at a frequency
of 20–22 cycles per minute. They reported that there
existed a critical deviatoric stress beyond which, a speci-
men subjected to cyclic loading continued to exhibit
plastic deformations until failure. In other words, at
high deviatoric stresses, a resilient state may not be
achieved (Figure 6.3). Dunlap (1963) applied cyclic
deviatoric stresses on granular specimens with a load
period of 0.2 seconds and measured deformations up to
100,000 cycles. He used two sets of tests at different
deviatoric stresses (51.8 psi and 34.5 psi) and studied
the influence of varying confining pressures (5, 10, 15,
20, 25, 30 psi). He reported that the dynamic modulus,
defined as the ratio between the repeated deviatoric
stress and the recoverable strain, had a linear relation-
ship with confining pressure and was dependent on the
applied repetitions.

Young and Baladi (1977) discussed the number of
load applications, deviator stress, load wave form, load
frequency and duration, and confining pressures that
had to be considered to simulate traffic loading, and

suggested to have 10,000 to 100,000 cycles, 1 psi to
70 psi deviatoric stress, square or sinusoidal waveform,
10 to 30 per minute frequency with a load duration
varying from 0.04 to 0.25 seconds at confining pressures
ranging from 0 psi to 25 psi. Brown and Hyde (1975)
studied the resilient behavior of well graded crushed
stone by measuring vertical as well as lateral strains
under constant and varying confining pressures, at a
cyclic deviatoric stress of 0 to 200 kPa. They reported
that the resilient modulus and permanent strains were
similar for tests performed at variable confining
pressure (VCP) and constant confining pressure
(CCP) equal to the mean of the cyclic confining
pressures (Figures 6.4a and 6.4b). The lateral strain
measurements were used to calculate the Poisson’s
ratio. They observed that unlike resilient modulus,
Poisson’s ratio was affected by the application of a
constant or variable confining pressure. The effect was
visible on not just the range of Poisson’s ratio values
obtained for the two tests but also on its variation with
an increasing ratio of deviatoric stress to mean
confining stress; while the Poisson’s ratio increased
with increasing ratio of deviatoric stress to mean
confining stress for CCP it reduced in the case of
VCP (Figure 6.4c). This behavior was further explained
by looking at the stress strain response under the two
test conditions. It was found that constant confining
pressure tests were accompanied with a low range of
volumetric strains and high range of shear strains. This
showed that unlike resilient modulus, Poisson’s ratio
was affected by the variation in mean normal stresses.

Repeated load tests were found to better simulate
real traffic conditions experienced by a pavement. The
evolution of MR test protocols is provided in Tables 6.1
and 6.2. Table 6.1 discusses the general test require-
ments such as material classification criteria, specimen
size and compaction methods, used by the different test
as well as the position of the LVDT and load cell, while
Table 6.2 tabulates the conditioning and testing
sequences adopted by each standard. The first standard

Figure 6.3 Effect of repeated loads on specimen deformation (from Larew & Leonards, 1962).
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Figure 6.4 Results for constant and variable confining pressure: (a) resilient modulus vs. mean confining stress; (b) permanent
strain vs. ratio of deviatoric stress to mean confining stress; and (c) poisson’s ratio vs. ratio of deviatoric stress to mean confining
stress.
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method for the resilient modulus of subgrade soils was
AASHTO T 274 (Oregon State University, 1990). This
standard faced criticism due to its complicated testing
sequence and lack of details in terms of selection of load
wave form, specimen size, compaction technique, etc.
In addition to this, the test stresses were deemed to be
too severe, resulting in specimen failure. This test
procedure was featured in the 1986 AASHTO design
guide, which adopted the use of subgrade resilient
modulus to design flexible pavements. Although a

standard test procedure was available during the time,
testing agencies worked with a slightly modified test
procedure based on experience while researchers at the
time focused on test procedure development and
identification of factors affecting the resilient behavior
of cohesive and granular soils. Elliott and Thornton
(1988) proposed a simplified version of the test which
could drastically reduce the testing time. They proposed
using a single value of confining pressure and deviatoric
stress based on subgrade conditions and a reduced



TABLE 6.1
Comparison of AASHTO test protocols for the Resilient Modulus Test of unbound subgrade soil materials: General test specifications

AASHTO AASHTO AASHTO AASHTO AASHTO \ NCHRP 1-28 NCHRP 1-28

T 274 (1982) T 292 (1991) T 294 (1992) T P46 (1996) T 307 (1999) (2004) A (2004)

Type of Material Cohesive and Cohesive and Type 1 (70% Type 1 (70% Same as Same as T P46 Type 1

Classification cohesionless cohesionless passing #10 passing #10 AASHTO Type 1a: Type 2

and 20% and 20% T P46 100% passing Type 3

passing #200) passing #200 1.5 in. sieve Type 4–2.8 in.

and Type 2 and PI # 10) and Type 1b: undisturbed

(All else) Type 2 (All else) 100% passing sample

1.0 in. sieve

Specimen Size 2.8 2.8 Type 1: 4, 6 Type 1: 6 Same as Type 1a: 6 Type 1: 4, 6

(in.) 4 4 Type 2: 2.8 Type 2: 2.8 AASHTO Type 1b: 4, 6 Type 2: 4

8 6 T P46 Type 2: 2.8, 4 Type 3: 4

Compaction Cohesive: Vibratory Type 1: Same as AASHTO Type 1: Type 1 Type 1:

Method Vibratory Vibratory T294 Vibratory Vibratory Vibratory,

Kneading Type 2: Type 2: Type 2 Impact

Static Static Vibratory Vibratory Type 2:

Cohesionless: Kneading Kneading Vibratory

Vibratory Static Static Type 3:

Kneading

Load Cell Position Inside Chamber Inside Chamber External External Inside Inside Inside

LVDT Position 2 LVDTs 2 LVDTs 2 LVDTs 2 LVDTs 2 LVDTs 2 LVDTs 2 LVDTs

attached clamped to clamped to clamped to clamped to attached attached

directly to the piston rod piston rod piston rod piston rod directly to directly to

specimen outside outside outside outside the specimen the specimen

chamber chamber chamber chamber

Load Shape Sine, haversine, Haversine, Haversine Haversine Haversine Haversine Haversine

rectangle, rectangle,

triangle triangle

Load/Cycle 0.1 s/ 1–3 s 0.05-0.1 s/1–3 s 0.1 s/ 1 s 0.1 s/ 1 s 0.1 s/ 1–3 s 0.1 s/ 1 s 0.1 s/ 1 s

Duration
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number of stress cycles to obtain resilient modulus
values that can be used in design. Seim (1990) discusses
a modified version of the AASHTO T 274 (Oregon
State University, 1990) procedure developed by the Soil
Mechanics Bureau of New York State Transport-
ation Department. The proposed procedure comprised
of changes to load frequency and duration as well as
additional deviatoric stress cycles and a phased
conditioning sequence for cohesive soils. The modifica-
tions were made to overcome equipment limitations as
well as reduce specimen failure associated with the
AASHTO procedure. Jackson (1989) further discusses
the complexities associated with the AASHTO T 274
(Oregon State University, 1990) procedure and the
modified testing adopted by the Washington Trans-
portation Department to carry out MR testing. The
modified testing program was composed of a single
confining pressure and deviatoric stress (6 psi and 8 psi,
respectively) for the conditioning phase followed by a
set of increasing confining pressures and deviatoric
stress cycles which covered the range of stresses found
in their pavement sections. Ho (1989) reported that the
AASHTO procedure comprised of confining pressures
which were unrealistically high in comparison to
typically observed values for subgrade soils in
Florida. They also reported specimen failure due to
the severe conditioning and high stress sequence

followed by the AASHTO protocol and proposed a
modified method with fewer confining and deviatoric
sequences; five sequences at 1, 2, and 5 psi confinement
and 2, 4, and 5 psi deviatoric stresses, accompanied
with a large (10,000) number repetition. The test results
also suggested that the subgrade materials tested near
optimum moisture conditions are independent of
number of repetitions.

Following the criticism, the testing procedure was
reviewed, and a new protocol was published in 1991,
AASHTO T 292. AASHTO T 292 (1991) included
a slightly less complex testing sequence with different
stress sequences for granular and cohesive materials,
but did not provide specifications for specimen size,
load wave form and duration. A revised version of the
test standard was released in 1992, AASHTO T 294,
which provided a more detailed testing procedure,
which followed a reversed sequence of stress applica-
tions for granular subgrade soil materials to account for
the stiffening of specimens during the test. However, the
test protocol that came next, AASHTO T P46, as part
of the Strategic Highway Research Program (SHRP),
changed the sequence for granular materials back to a
decreasing order of confining pressure application,
making it consistent with all subgrade soil materials.
However, different procedures were defined for pre-
paration of granular and cohesive soils samples.



TABLE 6.2
Comparison of AASHTO test protocols for the Resilient Modulus Test of unbound subgrade soil materials: Stress sequence

AASHTO AASHTO AASHTO AASHTO AASHTO NCHRP NCHRP

T 274 T 292 T 294 T P46 T 307 1-28 1-28 A

(1982) (1991) (1994) (FHWA, 1996) (2007) (Witczak, 2003) (Witczak, 2003)

Type of Material Cohesive Cohesive

subgrade

Type 2 soils Subgrade

type 2

Subgrade

type 2

Fine grained

subgrade

Fine grained

subgrade

Conditioning

CS/DS

6/1, 2, 4, 8, 10 3/3 6/4 6/4 6/4 0/5 4/8

# Cycles 20065 1,000 1,000 500–1,000 500–1,000 200 1,000

Test

CS/DS

6/1, 2, 4, 8, 10

3/1, 2, 4, 8, 10

0/1, 2, 4, 8, 10

3/3, 5, 7, 10, 15 6/2, 4, 6, 8, 10

3/2, 4, 6, 8, 10

0/2, 4, 6, 8, 10

6/2, 4, 6, 8, 10

4/2, 4, 6, 8, 10

2/2, 4, 6, 8, 10

6/2, 4, 6, 8, 10

4/2, 4, 6, 8, 10

2/2, 4, 6, 8, 10

0/3, 5, 7, 9, 11 8, 6, 4, 2/4

8, 6, 4, 2/7

8, 6, 4, 2/10

8, 6, 4, 2/14

# Cycles per

Sequence

200 50 100 100 100 50 100

# Sequences 15 5 15 15 15 5 15

Type of Material Cohesionless Granular

subgrade

Type 1 soils Subgrade

type 1

Subgrade

type 1

Granular and

low cohesion

subgrade

Granular

subgrade

Conditioning

CS/DS

5/5, 10

10/10, 15

15/15, 20

20/15 15/15 6/4 6/4 6/9.2 4/7

# Cycles 200 for each sequence 1,000 1,000 500–1,000 500–1,000 500 1,000

Test

CS/DS

20/1, 2, 5, 10, 15, 20

15/1, 2, 5, 10, 15, 20

10/1, 2, 5, 10, 15

5/1, 2, 5, 10, 15

1/1, 2, 5, 7.5, 10

20/10, 20, 30, 40

15/10, 20, 30, 40

10/5, 10, 20, 30

5/5, 10, 15

3/5, 7, 9

3/3, 6, 9

5/5, 10, 15

10/10, 20, 30

15/10, 15, 30

20/15, 20, 40

6/2, 4, 6, 8, 10

4/2, 4, 6, 8, 10

2/2, 4, 6

6/2, 4, 6, 8, 10

4/2, 4, 6, 8, 10

2/2, 4, 6

2/2.4, 3.4, 4.4

3/3.6, 4.4, 6.6

4/4.8, 6.8, 8.8

6/5.2, 7.2, 9.2

8/7.6, 9.6, 11.6

CS–2, 4, 6, 8, 12

DS–1, 2, 3, 4, 6

2, 4, 6, 8, 12

4, 8, 12, 16, 24

6, 12, 18, 24, 36

# Cycles per

Sequence

200 50 100 100 100 100 100

# Sequences 27 18 15 13 13 15 20
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The current protocol, AASHTO T 307-99 (2007) is
similar to AASHTO T P46. It describes the criterion for
selecting the specimen size based on soil classification
and provides a testing procedure comprising a con-
ditioning load sequence and subsequent load sequences
with different confining and maximum deviatoric stres-
ses. The recent methods proposed by the NCHRP,
NCHRP 1-28, and 1-28A recommend a significantly
different testing sequence. NCHRP 1-28 supports an
increasing sequence of confining pressure for granular
materials while NCHRP 1-28A features a stress
sequence based on increasing stress ratio.

To somewhat address the issue of how representative
the MR test is of actual conditions in the field,
researchers such as Kim and Kim (2007), Ng et al.
(2013) and Zhang et al. (2019) proposed a simplified
testing procedure. Kim and Kim (2007) proposed a test
under confining stress of 13.8 kPa (2 psi) and deviatoric
stresses of 13.8, 27.6, 41.4, 55.2, and 69 kPa (2, 4, 6, 8,
and 10 psi). The 13.8 kPa stress is the confinement
induced by an 80 kN Equivalent Single Axle Load
(ESAL). The researchers also reduced the number of
cycles to 250 for the conditioning phase and 50
repetitions for the other sequences. A comparison with
the normal testing protocol used in AASHTO T 307
(16 sequences) was done and it was observed that the

MR values with confining stress of 13.8 kPa (2 psi)
compared well with those using the standard protocol.
Ng et al. (2013) studied the soil water characteristic
curve (SWCC) of the soil in conjunction with the
repeated load triaxial (RLT) test to account for
seasonal variation in moisture content and the effect
of soil suction on resilient modulus. Soil suction was
controlled by applying predefined pore pressures at the
top and bottom of the specimen. The specimen was then
left to rest for a few days until the pore pressure attained
a state of equilibrium throughout the specimen. The RLT
test protocol was followed as per AASHTO T 307-99
(2007) without the initial conditioning to remove the
effects of overconsolidation. They observed that the
stress-strain response of cohesive soils was highly non-
linear and the resilient modulus values decreased with
increasing cyclic stress. Han et al. (2018) also considered
the soil water characteristic curve to study the variation
of the resilient modulus as a function of not only the
stress state but also of moisture content. Cyclic triaxial
tests were performed as per AASHTO T 307-99 (2007)
for three confining stresses (2, 4, 6 psi) and four devia-
toric stresses (2, 4, 6, and 8 psi). The higher deviatoric
stress sequence (10 psi) was eliminated due to the long
equilibrium period needed to control suction in the soil.
They also modified the conventional unconfined com-



pression (UC) test by allowing an unloading-reloading
loop at 1% axial strain. They found that the deviatoric
stress (Su1%) and reloading elastic modulus (E1%) at 1%
strain obtained from the modified UC tests provided
better correlations for estimating resilient modulus.

Due to the availability of so many different testing
protocols for a single test with many variations in
specifications and testing sequences, the accuracy of
any correlation between soil properties/classification
and resilient modulus is doubtful. For example, the
cyclic stress-strain response of soils is often character-
ized by confining stress, applied deviatoric stress, void
ratio, overconsolidation ratio (OCR), (Hardin &
Drnevich, 1972; Seed & Idriss, 1970). Equations 6.1
and 6.2 were proposed by Hardin and Drnevich (1972)
to evaluate the shear modulus (G).

Gmax~1,230
2:973{eð Þ2

1ze
OCRas0

1=2
m ðEq: 6:1Þ

G~
Gmax

1z
c

cr

ðEq: 6:2Þ

Where,
Gmax 5 maximum shear modulus in psi,
e 5 void ratio,
OCR 5 overconsolidation ratio,
a 5 parameter that depends on the plasticity index of
the soil,
s9m 5 mean principal effective stress in psi,
c 5 strain amplitude, and
cr 5 reference strain which depends on the small
strain shear modulus and shear stress at failure.

It can be seen from the equations that the shear
modulus of a soil increases with confinement, decreases
with shear strain and is affected by the stress history.
The lack of agreement among the different correlations
that exist for resilient modulus could be explained by
accounting for the effects of OCR of the soil during the
MR test. Because of all this, it may be informative to
study the stress-strain response, stress path and plastic
deformations of the soil with changes of stresses and
increasing cycles, to better understand the soil response.

7. SUMMARY, CONCLUSIONS, AND
RECOMMENDATIONS

7.1 Summary

The study presents data from three different sites in
Indiana, identified with the help of INDOT, for sample
collection and laboratory testing of subgrade soils. The
sites selected, namely US-31, SR-37 and I-65 were all
projects involving stabilization of subgrade soils with
cement. Soil characterization tests indicated that the
soils collected from site US-31 were primarily A-1 (SM)
soils, those collected from site SR-37 were A-2-4 (SC)
soils and the soils collected from the I-65 site were A-6

(CL+CM) soils and A-4 (CL) soils. The Atterberg limits
and the compaction tests indicated that the soils found
in the US-31 and I-65 sites were highly variable in terms
of plasticity index, optimum moisture content (OMC)
and maximum dry density (MDD), across the 11
locations where the samples were collected. The soils
from site SR-37 were uniform across the 11 locations.

Resilient Modulus Tests were performed on un-
treated and cement-treated samples for all locations in
all the three sites. The samples from site US-31 were
treated with 4% cement by weight and the samples from
sites SR-37 and I-65 with 5% cement by weight. All
samples were prepared at OMC and MDD and cured
for 28 days prior to testing. The resilient modulus
values for cement treated samples was found to be more
sensitive to the deviatoric stress and confining stress
compared to untreated samples across all three sites.

UCS testing was also performed on the cement treated
samples. Similar to what was done for the resilient
modulus, the samples were prepared at OMC and MDD
and cured for 7 days prior to testing. The sample
preparation and curing process was kept identical to that
of the MR tests to ensure compatibility of results. The
UCS results ranged from 1.2 MPa to 3.1 MPa (170 psi to
450 psi) for all the soils studied in this project. The
considerable range in the UCS test results is attributed to
soil variability and different soil types across the sites.
Additional tests were also performed on the 28 day cured
samples after the MR test was completed. The UCS
values of the 28-days cured samples was found to be 1.2
to 1.5 times the 7-day cured UCS values. The average
UCS values for the 7- and 28-days cured specimens were
used for the correlations.

7.2 Conclusions

The major conclusion of the study is that there is not
a direct statistically significant correlation between the
resilient modulus and UCS parameters. Such correla-
tion has not been found in the technical literature,
nor from the tests performed in this study. However, it
seems that the resilient modulus falls within a certain
range of values depending on the soil type. The majo-
rity of the resilient modulus of cement-treated A-2-4
soils investigated in this study ranged from 210 MPa to
275 MPa (30,000 psi to 40,000 psi). The majority of the
resilient modulus values for cement-treated A-4 and A-
6 soils fell in the range of 135 MPa to 240 MPa (20,000
psi to 35,000 psi). These range of values can prove
useful to get a sense of expected stiffnesses of cement
stabilized subgrades for typical Indiana soils. A linear
regression analysis involving the soil properties (plas-
ticity index, OMC and MDD) along with resilient
modulus and UCS results was also performed, to
establish a simple model for predicting the resilient
modulus values for the soils investigated. The linear
regression models perform at R2 values of 0.85 and 0.91
using 28-days cured and 7-days cured UCS data,
respectively. The drawback of these models is that they
are derived from and tested on limited high-quality
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laboratory data. Thus, the applicability of the model is
limited to the range of soils used in the study. A review
of the history of MR test suggests that the test pro-
cedure used to evaluate MR has undergone significant
changes over the years and is still very complicated. The
lack of statistically significant correlations between
resilient modulus and UCS in the literature as well as in
the current study could be explained by further looking
into the MR test procedure and improving our inter-
pretation of the test.

7.3 Recommendations

The laboratory tests and analyses performed in this
study, as well as those found in the literature, indicate
limited potential for accurate correlations between
resilient modulus and UCS for treated subgrade soils.
One possible explanation for this is that the current MR

testing sequence leads to initial overconsolidation of the
sample (as it goes from high confining to low confining
pressure). Other possible explanation is that, because of
the disparity of the tests, i.e., UCS tests strength while
the MR tests stiffness, such correlations do not exist.
However, given the complexity of the MR test and that
it is a test widely used and its results employed for
pavement design, further investigation on the test seems
warranted. Future work could focus on a more in-depth
study of the MR testing procedure and exploring a
possible modification of the test sequence to see the
effects on correlations, both with UCS and with FWD
tests. Additional testing could be performed to find
correlations based on seismic modulus or small-strain
modulus derived from shear wave velocity, as an
alternative approach for estimating resilient modulus
of treated subgrade soils.
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APPENDIX A. STRESS-STRAIN PLOTS 
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Figure A.1 Stress-Strain plots of 7-day UCS tests for site US-31. 
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Figure A.2 Stress-strain plots of 7-day UCS tests for site SR-37. 
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Figure A.3 Stress-strain plots of 7-day UCS tests for site I-65. 
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